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Abstract—This paper proposes a beamforming technique based on finding the optimum current weights 

using comprehensive learning particle swarm optimizer (CLPSO) for side-lobe level (SLL) reduction. In a 

wireless communication network operated by high altitude platforms (HAPs), the key factor for the 

carrier to interference ratio (CIR) improvement is the antenna SLL reduction. The antenna array 

configuration is chosen as concentric circular antenna array (CCAA) and the HAPs cellular system is 

consisting of 169 cells. Compared to other techniques, the proposed method can significantly suppress 

SLL and this can reduce the co-channel interference for HAPs cellular networks design which leads to a 

significant improvement in CIR. 

Keywords— Comprehensive learning particle swarm optimizer (CLPSO); concentric circular antenna array 

(CCAA); High altitude platforms (HAPs). 

 

1. INTRODUCTION  

With a growing demand for the broadband multimedia and higher data rate applications, 

service providers are looking for utilizing high altitude platforms (HAPs) to introduce 

broadband wireless access which has the benefits of both satellite and terrestrial 

communication systems [1]. HAPs are airplanes or airships which are located at stratospheric 

altitudes of 17-22 km. In HAPs, the line-of-sight (LoS) paths can be efficiently achieved, so 

that fewer infrastructures are used to serve the same coverage area compared to the terrestrial 
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services. HAPs also have important benefits over the satellite communication systems because 

of their low propagation delay and small free space path loss [2].  According to these merits, 

HAPs have been used in many applications such as communication services and other cost 

effectively applications [3] like broadband communications, remote sensing, navigation, event 

servicing, and emergency services. In [4], an efficient traffic monitoring and control system 

using HAPs is proposed. The system has a worthy performance compared to other systems 

which makes HAPs more convenient to establish wireless sensor network for traffic 

monitoring applications. Irrigation control system is achieved using HAPs to manage the 

amount of fresh water with high quality performance which cannot be attained by traditional 

smart irrigation techniques [5]. Digital video and audio broadcasting (DVB/DAB) is another 

application that is proposed using HAPs with enhanced link performance compared to 

terrestrial systems [6].  

The space and weight on a HAP are limited, the HAP antenna constitutes a significant part 

of the payload, and as a consequence designing the antenna with optimized parameters is vital 

[7]. Interference is a severe issue in any communication system. In a HAPs system, the 

interference is provided by antennas serving cells by intersecting the main lobes or the side 

lobes [8]. The level of the carrier to interference ratio (CIR) in a HAP cellular system, 

assuming LoS links, is a result of spatial spectrum reuse and is dominated by the antenna 

radiation pattern. The improving in the CIR will increase the system capacity and will allow 

the provision of new services.  

Many antenna configurations are applicable for HAPs. A set of different aperture antennas 

are used in [9] to provide one spot-beam per cell. Although HAP has high system capacity 

resulting from low side lobe levels, the antenna size and weight could be considerably large 

and improper. With beamforming, the antenna array provides higher directivity and capability 

to track users on the ground. The antenna array may be linear or planner. A linear array 



  

permits beam steering in one dimension. Therefore, this array configuration will not be 

suitable for HAPs. On the other hand, a two-dimensional array (TDA) can steer the beam in 

any direction. However, the SLL for this array is very high for practical applications in HAPs 

cellular system [10]. The concentric circular antenna array (CCAA) is a variant array 

configuration that has widespread applications [11]. The uniform concentric circular array 

(UCCA) leads to an SLL which is lower than that of the square TDA for a high number of 

rings at the expense of the wider beamwidth [10]. 

Many attempts to reduce the SLL of CCAA have been done. In [12], the existence of the 

central element in UCCA lowers the SLL while a minor increase is achieved in the 

beamwidth. This method is only sufficient for small-size arrays. The proposed technique to 

control the SLL of CCAA is presented in [13]. All elements in any ring have equal 

excitations. However, the different rings are weighted with different excitations through a 

Gaussian window. In this technique, the SLL can be decreased by increasing the number of 

rings and decreasing the number of elements in the inner rings. Recently, genetic algorithms 

(GAs) [14] and particle swarm optimizer (PSO) [15] have been examined for analysing the 

CCAA by optimizing the element spacing or the excitation weights of rings to minimize the 

maximum SLL. In [16], another approach is based on the improved discrete cuckoo search 

algorithm (IDCSA) has been used to suppress the maximum SLL with a specific half power 

beam width. Generally, IDCSA is proposed to solve the problem of CCAA by turning off 

certain array elements. In [17], a Symbiotic Organisms Search (SOS) algorithm has been used 

for sidelobe reduction. Unlike other methods, SOS algorithm is free of tuning parameters 

which makes it an attractive optimization method. In these studies, The PSO algorithm has 

achieved better performance than other evolutionary algorithms. 

The core shortage of the traditional PSO algorithm is the early convergence, especially 

with the multimodal problems. Different PSO algorithms were proposed to improve the PSO’s 



  

performance when dealing with multimodal problems. Many antenna design problems are 

multimodal. Consequently, there is a need for an optimization method that does not get 

trapped in a local optimum such as the comprehensive learning PSO (CLPSO) [18].  

In the previous work [11], a technique was developed for the synthesis of CCAA with 

central element. The comprehensive learning PSO (CLPSO) is used for obtaining the 

optimum current excitation weights and positioning of the rings.  

In this paper, a new technique which is based on the CLPSO is used to optimize the current 

excitation weights of the rings for SLL reduction. Therefore, the optimized CCAA, as well as 

the applied beamforming techniques, will help in improving the HAPs cellular performance 

regarding the levels of the CIR.  

The paper is organized as follows: In Section 2, the problem formulation is presented and 

discussed. In Section 3, the CCAA beamforming technique is discussed. Section 4 illustrates 

the performance of the HAPs cellular communications using CCAA. Finally, Section 5 

concludes the work. 

2. PROBLEM FORMULATION 

2.1 Geometry of CCAA 

The CCAA has elements organized in multiple concentric circular rings which differ in 

radius and number of elements as shown in Fig. 1. The array composed of   concentric 

circular rings where the     ring has a radius    and    is the number of elements in each 

ring where              . The elements in the array are assumed to be isotopic sources so 

the radiation pattern of array can be formulated in terms of the array factor only. When a 

single element is placed at the center of the CCAA as shown in Fig. 1, the array factor is given 

by [19]: 
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where   and    are the number of rings and the number of elements in each m ring, 

respectively,    is the excitation current of elements at the     ring,    is the radius of the 

    ring,   is the wave number,   and                   are the zenith angle from the 

positive z-axis and the azimuth angle from the positive x-axis respectively, and     is the 

element angular separation calculated from the positive x-axis [19]: 

        
   

  
 ;                ;                 (2) 

    is the phase difference between the elements in the CCAA [19]: 

                                        ;               (3) 

where    and    are the main lobe angles. A broadside radiation pattern is formed in case of 

   = 0 and   = constant. The array factor can be written as:  

                                    

  

   

 

   

 (4) 

 

The array factor is normalized to dB and written as follows: 
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Fig. 1 CCAA. 



  

2.2 Cost Function 

After defining the CCAA, the next step in the design procedure is the formulation of the 

cost function or fitness function that should be minimized to achieve the highest reduction of 

the maximum SLL and try to maintain the HPBW of the proposed design closed to the HPBW 

of the uniform excitation antenna array. To achieve these goals, the cost function (CF) is 

written as: 

                                  (6) 

where        is the magnitude of the maximum side-lobe level, W1 and W2 are positive 

weighting factors which are used to control the obtained results,       is the angel in radian 

of the computed first null beamwidth for the non-uniform excitation case, and       is the 

angel in radian of the first null beamwidth for the uniform excitation case       , 

where    is the excitation current of elements of the     ring. 

In this problem, the values of W1 and W2 are chosen to preserve the reduction of        

more dominant than the optimization of the HPBW of the array. In addition, the    never 

becomes negative. Consequently, the values of W1 and W2 are selected according to the 

experiment to be 18 and 1, respectively. In equation (6), the minimization of the    

guarantees a maximum reduction of the        as well as reducing the difference between 

the       and the      . 

3. PROPOSED BEAMFORMING TECHNIQUE 

3.1 PSO 

PSO is a developmental algorithm that simulates the swarm behaviour of bird flocking. In 

PSO, each swarm member (particle) represents a candidate solution which starts with random 

solutions. The particles position and velocity are updated in a search direction by learning 

from its own experience and the other particle’s experiences. Each particle velocity is 

modified by two optimum values called pbest and gbest. The first one is the best solution 



  

(fitness) that has been achieved so far. While the second one is the global best value obtained 

so far by any particle in the swarm [20]. The updated velocity and position equations of each 

particle in PSO are given by [18]: 

    
       

               
           

       
     

                                    
         

       
     

(7) 

    
       

         
   (8) 

where     
  and     

   are the current and previous velocities of the      particle in the 

    dimension, respectively, c1 and c2 are the acceleration constants reflecting the weighting 

of stochastic acceleration terms that pull each particle toward         
  and       

  positions, 

respectively,         
   and         

  are two random numbers in the range [0, 1],      
   and 

    
    represent the current and previous position of     particle in the     dimension, 

respectively. 

3.2 CLPSO  

The CLPSO is an updated version of the conventional PSO to guarantee that the diversity 

of the swarm is preserved to reduce the occurrence of premature convergence. In the CLPSO 

algorithm, any particle will learn from best solution (pbest) of another particle. Each particle’s 

velocity vector is updated by its own pbest and the other particle’s pbest to enhance the 

population diversity. The updated velocity equation of each particle in CLPSO is given by 

[18]: 

    
         

             
               

       
     (9) 

where   and   are the inertia weight and acceleration constant, respectively, fi = [fi(1), 

fi(2),….., fi(D)] defines which particles’ pbest the      particle should follow,             
  can 

be the corresponding dimension of any particle’s pbest including its own pbest, and the 

decision depends on probability Pc, which is a learning probability that uses different values 



  

for different particles. For each dimension of the      particle, a random number has been 

generated. If this random number is larger than Pc of the      particle, the corresponding 

dimension will learn from its own pbest; otherwise, it will learn from another particle’s pbest. 

When a particle learns from another particle’s pbest, the following selection procedure is 

used: 

 Two particles are chosen out of the population using a uniform random distribution 

excluding the particle whose velocity is modified. 

 The two particles fitness (pbests) are compared and the best one is chosen. 

 In the previous step, the selected particle’s pbest will be used as the exemplar to learn 

from for that dimension.  

If all exemplars of a particle are its own pbest, then randomly one dimension is chosen to 

learn from another particle’s pbest for that dimension. The details on how to choose fi(d) and 

further details on CLPSO are given in [18]. 

4. COMPUTATIONAL RESULTS AND PERFORMANCE OF HAPS CELLULAR 

COMMUNICATIONS USING CCAA 

4.1 Computational Results 

This section gives the simulated results for CCAA designs which are obtained by CLPSO 

technique. For CLPSO algorithm, the population size is set to 120, with 1000 iterations, and c 

= 1. The simulation is done by MATLAB.  

The CLPSO algorithm is used to optimize the current excitation weights for ten rings (M = 

10) using the cost function in (6) for the two cases: (a) CCAA with a central element and (b) 

CCAA without a central element. We assume that the innermost ring N1 has 3 elements and 

the element increment is 6 elements per ring outwardly. The inter-element spacing dm in any 

individual ring is half wavelength. For this case,    = 0 and   =  /4. 



  

Table 1 shows the output current excitation weights, SLL, and the HPBW for the two 

cases (a) and (b). These results show that SLL is substantially reduced in the optimized 

UCCA compared to the non-optimized one at the expense of increasing HPBW. The side-lobe 

level reduced to - 47.0442 dB in the case of CCAA without central element at the expense of a 

little increase in HPBW. 

Table 1: Excitation current weights (  ), SLL, and HPBW for non-optimized and optimized CCAA 

(with and without central element). 

 Current excitation weights 

                   

SLL 

(dB) 

HPBW 

(degrees) 

non-optimized 

UCCA 
1 - 17.5365 6.18

o
 

Case (a) 

Optimized array 

with central element 

0.4493 0.9981 0.8130 

0.7320 0.5886 0.4503 

0.3097 0.2190 0.1126 

0.0757 

- 45.887 8.26
o
 

Case (b) 

Optimized array  

without central 

element 

0.8538 0.9601 0.8480 

0.7227 0.5892 0.4512 

0.3089 0.2076 0.1152 

0.0730 

- 47.0442 8.3
o
 

 

Figure 2 illustrates the radiation pattern of the ten-ring CCAA with the excitation current 

weights obtained by CLPSO for the two cases (a) and (b). The side-lobe level of the case (b) 

is a little bit lower than that of the case (a) with almost the same HPBW. 

Figure 3 shows the radiation patterns of the optimized CCAA (case (b)) and the one 

obtained using Gaussian window (δ = 2.5) [10,13]. It is obvious that the radiation pattern of 

the optimized CCAA using CLPSO is nicer than that of the Gaussian window function. The 

optimized CCAA reduces the SLL to – 47.0442 dB compared to the –41.6239 dB level of the 

Gaussian window function with almost same HPBW. Another comparison is made when 

using Dolph-Chebyshev window (Ro = 80 dB) [21] and the results of the SOS  algorithm are 



  

summarized in Table 2. The SOS leads to a maximum SLL of − 42.40 dB for a ten-ring 

CCAA with a total number of 440 isotropic radiators [17]. In [16], IDCSA is a technique 

depends on sparse array synthesis (switching elements on and off). A CCAA with 10 rings 

needs to be optimized and the array has 440 antennas distributed uniformly along the rings. 

Generally, the maximum SLL obtained by IDCSA is – 22.17 dB and the number of switched-

off elements is 211. Whereas, CLPSO is used to optimize current excitation weights of the 

rings for SLL reduction. It can be noticed that the CLPSO technique achieves the lowest value 

of SLL. 

 

Fig. 2 Radiation pattern for the optimized CCAA for the two cases: (a) CCAA with central element and (b) 

CCAA without central element. 
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Fig. 3 Radiation patterns of the optimized CCAA (case (b)) and the CCAA using Gaussian window weights 

[10,13]. 

Table 2: SLL and HPBW for Gaussian window, Dolph-Chebyshev window, SOS, and CLPSO 

techniques. 

 

Technique SLL 

(dB) 

HPBW 

(degrees) 

Gaussian window 
- 41.6239 8.24

o
 

Dolph-Chebyshev window - 42.3186 10.3
o
 

SOS - 42.40 --- 

CLPSO - 47.0442 8.3
o
 

 

4.2 Performance of HAPs Cellular Communications Using CCAA 

This section discusses the performance of HAPs cellular communications using CCAA in 

terms of CIR when applying the proposed approach. We assume a cellular system consisting 

of 169 cells, as shown in Fig. 4, is deployed.  The model that shown in Fig. 4 is generated by 

flat-earth coverage model [22] where the cell is ellipse and antenna beam pointing angle 

algorithm [23]. In this model, the cells that labeled with “c” are the co-channel cells. The 



  

coverage diameter is typically 60 km and the average cell diameter is 3 km. Channel reuse 

number (cluster size) is set to 4. From the results in Section 3, the 3 km diameter is generated 

by a beamwidth of about 8.2
o
 at 21 km high and this can be generated by utilizing the CCAA 

with the proposed beamforming technique. 

For a given co-channel cell group, the CIR at each ground position (x,y) can be calculated 

as [8]: 

         
         

          
              

 (10) 

where Pmax (x, y) is the power of the beam having the maximum power from a set of n co-

channel beams, and therefore it is defined as the carrier (the wanted signal). The sum in (10) is  

 

 

Fig. 4 A HAP cellular system layout consisting of 169 cells generated from a platform at 21 km high where the 

axes represent the distance from the central cell in km. 

 

the sum of powers of all other beams, which is the aggregate interference. The received power 

calculated using [24] is: 

             
 

   
 
 

                  (11) 



  

where Pt is the transmitted HAP cell power, Gr (   ) is the mobile antenna gain, h is the HAP 

altitude, and         is the antenna array factor. 

The array size required to approximately fit the 8.2
o
  beamwidth for the UCCA, the 

Gaussian Window method [10,13], and the proposed approach is 7, 10, and 10 rings, 

respectively. We assume that the inner ring has 3 elements and the element increment is 6 

elements per ring outwardly. The inter-element spacing in any individual ring is half 

wavelength. In [10], the Gaussian window tapered beamforming is applied to the UCCA and 

compared to the TDA showing an improvement in the value of CIR. 

Figure 5 compares the proposed approach to the Gaussian window tapered beamforming. It 

depicts the cumulative distribution function (CDF) for both approaches. As shown, in our 

proposed approach, the CIR has increased due to the reduction of SLL, compared to the 

Gaussian window and UCCA techniques. 

 
Fig. 5 The CDF of CIR across coverage area for one channel of four. 

5. CONCLUSION 

In this study, a cellular planning technique for broadband services delivered from HAPs has 

been proposed. The achieved CIR patterns highly depend on the antenna beamwidths. The 



  

radio coverage from a HAPs station may be accomplished by either spot beam antennas or 

antenna arrays which introduces more flexibility in controlling the ground cells. CCAA has 

more advantages than other configurations for HAPS. In this paper, a CLPSO based technique 

for designing a CCAA with and without central element is given. In this method, current 

excitation weights of rings are optimized. The computational results show that the CCAA 

without central element achieves a side-lobe level of – 47.0442 dB which is lower than that of 

the one with central element. In addition, the optimized CCAA has shown to have the lowest 

maximum SLL compared to the CCAAs with Gaussian and Dolph-Chebyshev windows. The 

CIR variation for a typical cellular layout of 169 cells utilizing a frequency reuse of 4 is 

depicted and shows an improvement in the value of CIR using the proposed beamforming 

method compared to the Gaussian window method. 
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